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Abstract—Internet of Things (IoT) enables the seamless in-
tegration of sensors, actuators and communication devices for
real-time applications. IoT systems require good quality sensor
data in order to make real-time decisions. However, values are
often missing from the sensor data collected owing to faulty
sensors, a loss of data during communication, interference and
measurement errors. Considering the spatiotemporal nature of
IoT data and the uncertainty of the data collected by sensors, we
propose a new framework with which to impute missing values
utilizing Bayesian Maximum Entropy (BME) as a convenient
means to estimate the missing data from IoT applications.
Missing sensor measurements adversely affect the quality of
data, and consequently the performance and outcomes of IoT
systems. Our proposed framework incorporates BME in order
to impute missing values in diverse IoT scenarios by making
use of the combination of low- and high-precision sensors.
Our approach can incorporate the measurement errors of low-
precision sensors as interval quantities along with the high-
precision sensor measurements, making it highly suitable for
real-time IoT systems. Our framework is robust to variations in
data, requires less execution time, and requires only a single input
parameter, thus outperforming existing IoT data imputation
methods. The experimental results obtained for three IoT datasets
demonstrate the superiority of the BME framework as regards
accuracy, running time and robustness. The framework can
additionally be extended to distributed IoT nodes for the online
imputation of missing values.

Index Terms—Internet of Things (IoT), missing data, im-
putation, Bayesian Maximum Entropy (BME), spatio-temporal
analysis

I. INTRODUCTION

Advances in sensing phenomena, memory capacity, com-
putational power and wireless communications have led to
significant advances in the way in which we interact with our
surroundings, people and businesses. Internet of Things (IoT)
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enables the seamless integration of sensors, actuators, and
communication devices for real-time sensing, communication
and the remote control of actuators [1]. There are currently
about 26 billion IoT devices worldwide (up from 15 billion
in 2015) and this number is projected to reach a massive 75
billion by 2025 [2]. This exponential increase in the number
of devices is set to produce copious amounts of structured,
semi-structured, unstructured and real-time data from billions
of homogeneous and heterogeneous devices, resulting in Big
Data [3]. This increase in the number of devices is possible as
a result of cheap sensor nodes (that often have lower precision)
and inexpensive computation capabilities.

The interconnected nature of sensors, actuators and infras-
tructure systems provides advanced solutions through the use
of artificial intelligence (AI) and Big Data analytics across
a wide range of sectors [4]. IoT’s fundamental strength is
derived from its ability to uniquely identify “things” (or
the devices) and turns them into “smart objects” with low-
to-moderate computing and communication capabilities. The
capabilities are further enhanced by utilizing Edge, Fog
and Cloud computing paradigms, along with visualization
technologies. These developments have enabled several IoT
applications to facilitate the emergence of the smart city
[5] including building automation and energy efficiency in
buildings [6], [7], precision agriculture [8], autonomous cars
[9] and safer transportation mechanisms [10], managing water
resources [11], [12] and the monitoring of structural health
[13]. For example, the smart grid solution enables consumers
to check their energy usage in real time, primarily thanks to
sensors monitoring energy usage, which analyze the usage and
communicate it to consumers. This helps consumers make
savings as regards their energy bills while simultaneously
reducing energy consumption from the power grid. This
win-win solution is principally possible because of IoT. For
applications involving real time decision-making, the quality
of the spatiotemporal data is of the utmost importance. Ob-
taining reliable measurements with the deployment of low-
cost sensors can be achieved by deploying a mix of fewer
high-precision sensors at low spatial resolutions and a larger
number of inexpensive, low-precision sensors at high spatial
resolutions over an area of interest [14]. This strategy of using
a combination of low- and high-precision sensors not only
reduces the cost of networking, but also extends the reach of
the network and provides opportunities for varieties of IoT
applications.

However, values are often missing from the sensor data
collected. There are a variety of reasons for missing data: (i)
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faulty sensors producing intermittent readings, (ii) the loss of
data during wireless communication owing to packet loss, (iii)
the loss of data owing to interference in the communication
medium, leading to unusable or unrecognizable values, and
(iv) data removed purposely by attackers with malicious in-
tentions during sensing, processing, storing or communication.
The research challenge is to impute (in addition to assigning
or representing) the missing values in order to enable the data
to be analyzed while ensuring that the imputed values are as
close as possible to the true values. The imputation of missing
data in IoT is an important challenge as the data is diverse, and
the techniques developed must, therefore, be robust to scale
and provide a high level of confidence for different types of
applications. Techniques must additionally be lightweight in
order to cater for real-time IoT application requirements.

In this paper, we propose a new framework with which to
impute missing values in IoT environments using Bayesian
Maximum Entropy (BME). We demonstrate the use of our
framework in three IoT scenarios: (1) an indoor office setting,
measuring the temperature at Intel Berkeley Research Lab
(IBRL), (2) outdoor weather data, measuring humidity at
Docklands Library (situated along the harbor front in the
City of Melbourne, Australia), and (3) outdoor weather station
data, measuring the water temperature along the lakefront of
Lake Michigan, Chicago. Our proposed scheme outperforms
existing schemes as regards accuracy, execution time and
robustness. The main contributions in the proposed framework
are:
• A new missing data imputation framework is proposed

that incorporates BME in order to impute missing values
in diverse IoT scenarios by making use of a combination
of low- and high-precision sensors.

• We demonstrate the robustness of our approach by vali-
dating it with three different real-world IoT datasets. Our
approach for the imputation of missing data is robust to
variations in high-variance data and outperforms existing
state-of-the-art methods.

• We also demonstrate how our proposed framework re-
quires significantly less execution time, making it highly
suitable for real-time IoT systems. Our framework main-
tains lower and stable execution times when the percent-
age of missing values increases.

• Our framework also requires fewer input parameters, thus
making it suitable for distributed IoT systems. In fact, we
show that the value of this input parameter does not affect
the performance of our approach to any great extent.

The main idea in our framework is to allow processes that
depend on online data to continue functioning normally even
if there are missing values. We achieve this by employing a
method that is superior to other state-of-the-art methods in
terms of accuracy, and which is better adapted to dynamic
scenarios.

II. RELATED WORK

The data in IoT applications are often used in clustering,
classification, or prediction problems to extract useful infor-
mation. These data should be clean and complete in order to

use them for reliable decision making. However, missing data
in IoT networks severely affects the data quality. Related litera-
ture contains four principal broad categories of data imputation
techniques [15]: (1) deletion of missing data, (2) imputation
or estimation of missing data using statistical methods and/or
machine learning, (3) estimating the missing values on the
basis of modeling the known distribution (such as Expectation-
Maximization, Gaussian Mixture Models), and (4) classifying
data that contains missing data by means of machine learning
(ML), wherein the ML model handles missing data without
explicitly providing the missing information.

Missing data is, moreover, broadly categorized into 3 groups
[15], [16]: (1) missing completely at random (MCAR), (2)
missing at random (MAR), and (3) missing not at random
(MNAR). An MCAR is a missing data mechanism in which
the missing value is independent of the variable itself, i.e.,
the missing value is not influenced by any external factors,
but is unavailable owing to random events; this could, for
example, be owing to a sensor node breaking down because
of an accident. In the case of MAR, the missing variable
is independent, but can nevertheless be predicted using data
variables i.e., the missing value is influenced by other factors,
such as sensor failings during a cleaning event, when the power
supply to the sensors was disturbed. In the case of MNAR,
the missing values are dependent on the variable itself and the
event is non-random.

A. Imputations of Missing Data in WSN

Using spatiotemporal correlations as a basis, k-nearest
neighbor (k-NN) [17] was was adopted in order to estimate
the missing data in wireless sensor networks (WSN) [18].
The k-NN is a non-parametric method used in clustering,
regression and/or classification tasks. in [18], the missing data
were estimated by employing spatial correlations among the k-
NN and using a linear regression model, whereas the temporal
relations were ignored. There are also examples of the use of
Compressed Sensing (CS) to recover missing data from WSN
in literature. CS is a signal processing technique in which the
data is recovered by utilizing the signal sparsity from fewer
samples, adhering to the Nyquist-Shannon sampling theorem
[19]. Missing values are recovered by applying the principles
of CS to WSN data, which featured spatial correlation, tem-
poral stability and low-rank structure [20].

Several machine learning models have also been introduced
to address the missing value problem, such as Neural Networks
[21], Generative Adversarial Networks (GANs) [22] and the
sparse auto-encoder, which was modified in order to deal
with missing values and was used along with the Restricted
Boltzmann Machine [23]. These methods tend to introduce
bias into the models learned when data are limited or are of
poor quality. The preliminary work [24] tested several black
box models in order to interpolate missing values from the
specific context of buildings. It was found that the probability
distribution of the lengths of the gaps in the data closely
follows a log-logistic distribution, despite the diverse causes
of missing values (occupants interfering with the sensors,
disconnected wifi or software problems).
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Recommender systems use collaborative filtering to gather
information from multiple users (or agents) in order to rec-
ommend a choice for users. Netflix, YouTube, and Spotify
are some examples of recommender systems. Collaborative
filtering is also useful as regards predicting missing values. In
[25], spatiotemporal correlations were captured by grouping
the sensor nodes, after which matrix factorization was utilized
to learn latent factors so as to predict missing values. However,
this type of system is vulnerable as regards being biased
towards predicting the view of the majority.

B. Imputation of Missing Data in IoT Systems

IoT systems largely differ from WSN in that WSN were
primarily used to acquire data, process small amounts of data,
transmit data from leaf nodes to clusters to be aggregated
and, occasionally, to send control signals to actuators. External
interventions by humans were required in order to make
decisions based on the WSN data and actuate certain devices.
However, IoT systems subsume not only the WSN system,
but also (i) Radio Frequency Identification (RFID) tags for
the identification of objects (or devices); (ii) middleware for
software services; (iii) cloud and edge computing in order to
provide services over the Internet, and (iv) the enabling of
machine-to-machine (M2M) and Human Computer Interaction
(HCI) [26]. In other words, IoT systems integrate devices with
intelligence, decision-making capabilities and also humans
into the loop.

As the complexity and nature of the IoT systems are
significantly different from those of WSN, the techniques
proposed for WSN may not be directly applicable, as IoT and
WSN differ in many aspects of the application requirements.
From a technical standpoint, we have to be aware of the
following key aspects [26]: scalability, robustness, quality of
service, heterogeneity of devices and networks, deployment
and coverage, mobility, power management, identification of
devices, autonomous networking, data management, commu-
nication, and security and privacy.

Yan et al. [27] proposed a Gaussian Mixture Model (GMM)
to handle missing values in IoT systems. These authors pro-
posed the recovery of 21 missing temperature sensor values
from a set of 220 observations. Their experiments do not
reveal how many distributions were present in the data and
neither do the authors provide rationale for adopting GMM.
Mary et al. [28] proposed an extended spatial and temporal
correlated proximate (ESTCP) model with which to impute
missing data from the City Pulse 1 air pollution dataset
consisting of 17, 569 observations (sampled every 5 minutes).
ESTCP mainly employs time lagged correlations to impute
the missing values, and it is consequently suitable for datasets
with temporal correlations.

Collaborative filtering (or recommender systems) is used
to predict users’ preferences on the bases of their histori-
cal preferences, including samples or choices obtained from
people among the population [29], [30]. We often see this
on a daily basis in e-commerce and movie recommendation
systems, such as Netflix, Amazon, YouTube and others. The

1http://iot.ee.surrey.ac.uk:8080/

idea is to enable collaborative filtering techniques to impute the
missing value [31], [32]. One of the major drawbacks of col-
laborative filtering is that it cannot efficiently handle very large
datasets or large numbers of users [33]. The issue of handling
large datasets and number of users, was addressed through
the introduction of Probabilistic Matrix Factorization (PMF).
PMF is a decomposition technique in which a given matrix
is decomposed into two low-rank matrices [33]. Fekade et
al. [34] proposed an extension of PMF in order to recover
missing data in IoT networks. The advantage of PMF is that
it scales linearly with the number of observations and also
performs well in the case of large, sparse, and very imbalanced
data [33]. This is important in the case of IoT systems as
they accumulate large datasets from multiple users over the
course of time. It should be noted that PMF techniques do
not naturally incorporate the location of the data, but that they
have to be incorporated when PMF is used in an IoT system.
For instance, spatial information was considered by clustering
the sensors according to their locations using the well-known
k-means algorithm, while the PMF algorithm was later applied
to the sensor data from each of the clusters [34].

Kriging is another important technique that is commonly
used to impute missing values. The objective of Kriging
techniques is to interpolate the intermediate value (or point)
by following a Gaussian process in the neighborhood of
the point. The Kriging family has traditionally been one of
the most popular techniques for the analysis of the spatial
characteristics of an attribute when compared to several other
geostatistical methods [35]. When applied to geostatistical
mapping, Kriging takes into account the attribute’s mean
trends, spatial covariance or semi-variance, and observed at-
tribute values. Kriging originated in the areas of mining and
geostatistics, which involve spatially and temporally correlated
data and has become a generic methodology for several
closely related least-squares methods that provide Best Linear
Unbiased Predictions (BLUP) and also some non-linear types
of prediction. Kriging models are able to predict the missing
values at new locations from which data has not been acquired
optimally, i.e.without bias and with minimum variance. We
find the use of Kriging techniques in [36], [37], where it
is used to impute missing data; however, Kriging techniques
have proven to be sub-optimal and restrictive when modelling
complex spatiotemporal data. Moreover, Kriging techniques do
not consider the measurement errors of low-precision sensors
in estimation [38], which limits the use of Kriging in IoT
applications, in which the majority of the nodes will have
low-precision sensors.

C. Probability Matrix Factorization (PMF) for Missing Data
Imputation

As mentioned earlier, very little research has been conducted
in order to address missing data imputation in IoT systems.
The PMF-based method [34] is the state-of-the-art technique
for missing data imputation in IoT that we compare in our
experiments with our proposed framework. Before moving
onto our proposed framework, we briefly explain the PMF
method [34] in order to provide a better understanding of how
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our proposed framework is different. The steps in PMF [34]
are:

1) Normalize the observations of each sensor by re-scaling
the observations in the range (0, 1):

zi =
xi −min(x)

max(x)−min(x)
, (1)

where i indicates the timestamp, xi is the data value at
time i and zi is the normalised observation at time i.

2) Represent the normalized dataset as a matrix R with
dimensions N × M , where N is the number of rows
representing sensors and M is the number of columns
representing observations. It is assumed that R follows
a Gaussian distribution as the data has been normalized:

R =

R11 . . . R1M

...
. . .

...
RN1 . . . RNM

 (2)

3) Generate random matrices U [N × K] and V [M ×
K], where each row follows a Gaussian distribution with
mean µ = 0 and a small standard deviation (σU for U
and σV for V). K represents the number of latent feature
column-vectors.

4) Let I be a matrix that indicates the positions of missing
values in R as follows:

Iij =

{
1, if Iij is a known value
0, if Iij is a missing value

(3)

5) Compute the root mean square error (RMSE), where a
quadratic regularization is added as follows:

RMSEq =
N∑
i=1

M∑
j=1

Iij
(
Rij − UiV jT

)2−
N∑
i=1

λU ||U ||2 +
M∑
j=1

λV ||V ||2 (4)

The regularization parameters λU and λV will control
the magnitudes of updated matrices U and V and this
will, in turn, help to avoid overfitting the data.

6) Update the values of U and V such that:

U ′ij = Uij + α
∂RMSEqij

∂Ui
(5)

V ′ij = Vij + α
∂RMSEqij

∂Vj
(6)

where α is the slope value that defines how much of
U and V need to be adjusted. Choosing the right α is
important to attain convergence.

7) After some iterations (when the values attain the RMSE
threshold or the maximum number of iterations is ob-
tained), the missing values comprising the matrix prod-
uct are extracted using the previously defined identity
matrix given by I in (4).

8) Finally, the values are converted back or unnormalized
in order to obtain the estimation on the right scale.

The computational complexity of PMF might seem high
owing to the matrix multiplications; however, there are many
calculations that can be avoided. Only those calculations that
are used to obtain the components of the original matrix R
that are missing are required. In this case, if n is the number
of missing values, then the complexity of PMF is O(kn) for
each iteration in the model.

D. Limitations of PMF in IoT Use Cases

The adoption of PMF with the purpose of imputing data
has several drawbacks in dynamic IoT scenarios. Some of the
major limitations that make PMF unsuitable for IoT scenarios
are listed below:

1) PMF is an iterative procedure. It may get stuck in a local
minimum, thus leading to sub-optimal solutions.

2) PMF does not naturally incorporate the location of
the data. This problem is solved by using a clustering
technique whose choice does not appear to cover all
the possibilities in IoT systems. It is not always true
that geographically close sensors are always related to
each other. For example, rooms with different purposes
might be closer in measurements than others that are
closer in space i.e., a personal office could be closer
to a meeting room or the library than to other personal
office that might encounter similar usage patterns and
sensors might, therefore, provide a similar value.

3) PMF cannot be used for Big Data or large-scale sensor
networks owing to the vastness of data and the com-
putational complexity of the matrix operations. In our
experiments, we show that PMF requires more execution
time as the number of missing values increases.

4) PMF fails to incorporate uncertainty in the measure-
ments present in inexpensive low-precision sensor mea-
surements. This is again a significant drawback, as IoT
systems will include low-precision sensors.

In the following section, we introduce our BME-based
generic framework, which addresses many of the issues en-
countered in the PMF and Kriging approaches whose purpose
is to solve the problem of missing values.

III. OUR APPROACH: A BME FRAMEWORK FOR THE
RECOVERY OF MISSING DATA

In our framework, we utilize the spatiotemporal characteris-
tics of the IoT data in order to impute missing values. We em-
ploy a knowledge-based BME model in our framework, since
this model is better than the traditional stochastic estimation
methods [39]. BME is a mapping method for spatiotemporal
estimation [40] that allows various knowledge bases to be
incorporated in a logical manner—definite rules for prior
information, hard and soft data into modeling [38] . This does
not occur with other approaches, which do not incorporate
prior information such as knowledge of the physics of the
phenomena involved, geological interpretations and experience
of similar site conditions into the modeling. To illustrate this
point, we utilized BME for the spatiotemporal modeling of a
park’s humidity, the indoor temperature of an office and the
water temperature in a lake in different parts of the world.
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Fig. 1. Missing sensor data imputation using BME: (1) The prior step extracts the general knowledge from an experimental variogram (computed using
data from all sensors) and later entropy maximization is applied to compute prior probability density function (pdf); (2) The meta-prior step extracts specific
knowledge from the hard and soft sensors; (3) The posterior step uses Bayesian conditionalization to obtain the posterior pdf for creating spatiotemporal maps.

BME has, in the past, been used to estimate ozone [41], for
the risk assessment of soil pollution [42], to optimize the
deployment of solar monitoring stations [43] and to estimate
particulate matter (PM) 2.5 [44]. An introduction to the BME
method and its ability to incorporate prior information and
measurement uncertainties in its estimation model is provided
below.

A. BME modelling

Let xdata = [x1, x2, ..., xn]T denote the set of physical
variable x measured at locations si (where i = 1, 2, ..., n
denoting the n geographical locations). Physical data points
can be of two kinds:
• Hard data is obtained from reliable high-precision sen-

sors. Examples of hard data include thermostat values,
weather monitoring stations, etc. In this work, we denote
hard data as xhard = [x1h

, x2h
, ..., xnh

]T measured at
locations sh = [s1h

, ...snh
].

• Soft data. Soft data is the data that may have some un-
certainties. These include observations, opinions, knowl-
edge, experience, etc. Soft data can be represented by
intervals or in a probabilistic form. In our work, we use
sensor measurements in the form of interval data. We
denote soft data as xsoft = [x1l

, ..., xnl
]T measured at lo-

cations ss = [s1s
, ...sns

], such that the soft data value xi
lies within a known interval Ii, that is: xi ∈ Ii = [li, ui].

The physical knowledge regarding a natural process used by
BME [45] can be divided into general knowledge KG (such
as a scientific law and summary statistics) and specificatory
knowledge, KS (obtained through experience and specific
situations associated with physical data points).

In this respect, xdata = {xhard ∪ xsoft} and the total
knowledge is K = {KG ∪ KS}. In this work, we estimate

the realization xk at a location sk ∈ sE , where sE is a set of
locations at which data is missing. These realizations are then
used to generate a spatiotemporal map xmap = xdata ∪ xE at
locations smap = {s1, s2, ...sn, sE}.

BME modeling includes three stages of knowledge acqui-
sition, integration and processing: (i) a prior stage, (ii) a pre-
posterior (or meta-prior) stage, and (iii) a posterior stage. Each
stage processes certain knowledge and data as shown in Fig.
1.

a) Prior Stage: BME uses prior information as auxil-
iary constraint information to guide towards a more accu-
rate spatiotemporal prediction. This prior information could
comprise a physical law or a principle that is applicable
to the natural process of interest [46]. In order to integrate
this general knowledge (KG), BME utilizes the Shannon
information entropy (1948) [47] and the Maximum Entropy
principle. The Shannon information entropy is the average
amount of information produced by a stochastic source of data
and formally is expressed as: I(xmap) = −log2(ΦG(xmap)),
where xmap is the realization of an ST map and ΦG(xmap) is
the prior PDF model, which refers to the general knowledge
KG. The expectation or entropy (H) contained in the prior
PDF can, therefore, be expressed as follows:

H(xmap) =

∫
ΦG(xmap)I(xmap) dxmap =

= −
∫

ΦG(xmap)log2(ΦG(xmap)) dxmap

(7)

Since the Maximum Entropy principle is followed, the best
model is that which allows the most uncertainty (entropy)
from the data. The shape of prior PDF is, therefore, derived
by maximizing the entropy (H(xmap)) and by taking the
following constraint into consideration:
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gα =

∫
gα(xmap)ΦG(xmap) dxmap, α = 1, ..., Np, (8)

where gα are properly chosen functions, signifying that their
expectations gα provide the space/time statistical moments of
interest (by convention g0 = 1 and g0 = 1). The Np value
is chosen in such a way that the stochastic moments included
with Np involve all points. For example, by choosing gα as
mean and covariance function with g0 = 1, the total number
of constraints required is Np = 1 + (n+ 1)(n+ 4)/2, where
n represents the total number of geographical locations.

The prior knowledge regarding the monitoring area can be
obtained in the form of the mean, the covariance function or
any other higher order moments in the space-time domain.

The mean function xmap of the spatiotemporal random field
(the bar denotes stochastic expectation) characterizes trends
and systematic structures in space/time; and the space-time
variability of x can be expressed in terms of a centered
covariance function as:

Cmap = H[(xmap(p)− xmap(p))(xmap(p
′)− xmap(p

′))] ∀p, p′ (9)

In this work, the mean and the covariance function are
used as general prior knowledge. An exponential function is
used to model a spatio-temporal covariance structure known
as a variogram. A variogram (or a semi-variogram) [48] is an
experimental function used to determine spatial correlations
in observations measured in a defined area. This provides a
means to analyze how one point has an influence on other
points in different spatial and time separations (lags). We
provide more details about variograms in Section IV.

The optimization for this maximization is done using the
Lagrange multipliers λα. In this respect, the prior PDF can
be expressed as ΦG(xmap) = H−1eΘG[xmap], where H =
e−λ0 is a normalization constant, ΘG represents the opera-
tor processing the general knowledge KG and is given by∑Nc

α=1 λαgα(xmap).
b) Meta-prior Stage: This stage considers the spec-

ificatory knowledge including hard and soft physical data
points. In this work, we use interval I to express the soft
data, where interval ranges are defined using the measurement
error/uncertainty of low precision sensors.

c) Posterior Stage: In this last stage, both knowledge
bases (general and specificatory) are integrated with the ob-
jective of maximizing the posterior PDF, given total knowledge
K. The prior PDF is updated by taking the site-specific knowl-
edge into consideration. The conditional PDF is expressed in
terms of prior PDF (prior stage), specific knowledge (meta-
prior stage) and information available at a posterior stage as
follows:

ΦK(xk|xdata) = J−1ΘS [ΦG(xmap), xsoft] (10)

where J is the normalization parameter given by:

J = ΘS [xsoft,ΦG(xdata)] =

∫
I

ΦG(xdata) dxsoft (11)

and ΘS represents the posterior operator that incorporates the
soft data.

The posterior PDF provides a complete statistical distribu-
tion of the estimation situation, which can be used to obtain
different estimators, including the mean and mode of PDF with
estimation uncertainty. The missing values are estimated by
maximizing the posterior PDF with respect to xE such that the
BME estimate minimizes the mean squared estimation error.
In this work, we compute the mean estimate by employing the
updated PDF of a missing value.

B. Advantages of proposed BME framework

The main advantages of the BME method over the state-of-
the art methods PMF and Kriging are highlighted below.

BME vs Kriging:
• BME does not assume that the data follow a certain dis-

tribution, whereas Kriging does assume that data follow
a normal distribution, since they are driven by Gaussian
processes.

• BME can use the stochastic moments of any order,
whereas Kriging is restricted to first and second order
moments

• BME can incorporate uncertain data, given its character-
istics, whereas kriging has provided limited results when
carrying out tasks of this type.

BME vs PMF:
• BME can incorporate physical knowledge of the phenom-

ena under study.
• BME naturally incorporates the location of the sensors as

part of its process, and benefits from this information.
• Once the variograms have been computed, the complexity

of BME is linear and independent from past measures,
which makes it suitable for fast Big Data scenarios and
edge computing.

• BME incorporates uncertain data intrinsically, while PMF
is not able to do so.

IV. EXPERIMENTAL SETUP

Different IoT applications measure different spatiotemporal
phenomena, and we have, therefore, considered a general way
in which to model the prior information regarding the spatial
variability of the variates being estimated. A variogram (or a
semi-variogram) [48] is an experimental function that is used
to determine spatial correlations in observations measured in a
defined area. They provide a means to analyze how one point
has an influence on other points in different spatial and time
separations (lags).

In this work, the mean and the covariance functions were
used as the prior knowledge. In order to obtain covariance
estimates, it is necessary to compute the experimental vari-
ogram [49] at sample locations in the area of interest. The
idea behind variogram analysis is to build a variogram that
will obtain the best estimate of the auto-correlation structure of
the essential stochastic process. Computing the experimental
variogram includes fitting a wide sense stationary, spatially
isotropic, spatiotemporal covariance mode to the real data of
sensor measurements [50]. As we performed the estimation of
missing value iteratively in the time domain, only the spatial
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covariance model was used to fit the data. Many variogram
models are available, depending on the characteristics of
the problem. These include nugget effect, linear, exponential,
spherical, Gaussian and potential models [51], [52]. The most
important part of a variogram is its shape near the origin, as
the points closer to the origin are given more weight in the
estimation process. A typical variogram model is depicted in
Fig. 2. The main components of a variogram are sill, range
and nugget effect. They are defined as:
• nugget effect (C0) is the value at which the semi-

variogram (almost) intercepts the y-axis.
• sill (C) is the point at which the model flattens out. For

large values of separation distance (h), the variogram
levels out, indicating that there are no more correlation
between data points.

• range (r) is the distance between the origin and the sill,
and this represents the general distance over which the
samples are auto-correlated.

In our experiments, we use the exponential variogram, based
on fitting the best model to the empirical variogram obtained
for the datasets employed for evaluation. Its formula is:

γ(h) = C0 + C[1− exp(−3h

r
)], (12)

where C0 is a constant owing to the nugget effect, which raises
the whole theoretical semi-variogram by C0 units, r is the
distance at which samples become independent of each other
(denominated as the range of a sample) and C is the sill value
of γ(h) at which the semivariogram graph levels off.

Nugget 

effect (C0)

Sill (C)

Range (r)

(h)

h

Fig. 2. Three components [nugget (c0), sill (C) and range (r)] of a generic
Variogram. Nugget represents the measurement error.

Hard and soft sensors measurements provide specific knowl-
edge that can be incorporated into the meta-prior stage of
BME. As we did not have the ground truth information for
the low-precision sensors, we assumed the actual measured
values as a ground truth for evaluation. These actual measure-
ments were then pre-processed into interval values, using their
measurement errors δ as a basis, in order to make them soft
data. The estimation algorithm was evaluated by comparing the
ground truth value (actually measured) at any sensor location
with the estimated value at that location using other high- and
low-precision measurements obtained from sensor nodes in the
neighboring locations.

As the data did not contain information regarding the
measurement errors, we added some uncertainty levels to the

original measurements in order to convert them into low-
precision measurements, i.e., the soft data in our simulations.
These levels were determined by the widths of the interval
Ii = [x− uδ, x+ uδ] where x represents the measurements, i
is the soft sensor ID and u ∈ {0, 1} is a random number. A
specific δ is selected for each of the datasets as the deviations
will be based on the variability of sensor measurements in
the spatio-temporal domain. The accuracy of a sensor can
be expressed either as a full scale percentage or in absolute
terms. We have calculated δ as 5 % of the measurements’
ranges. This was a fixed solution owing to the fact that we
performed several experiments. However, since interval soft
data denote physical meanings with upper and lower bounds
[53], we recommend changing δ according to the information
available as regards the sensors’ accuracy.

A. Metrics and Implementation

The accuracy of the methods was computed using the Root
Mean Squared Error (RMSE) defined as

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ȳi)2, (13)

where n is the total number of missing values, ȳi is an
estimated missing value, and yi is the corresponding ground
truth for samples i = 1, . . . , n.

Our experiments included two scenarios:
• Hard. In this scenario, we considered that all the sensors

were high-precision, and had reliable measurements.
• Soft: In this scenario, we considered that the majority

of the sensors were low-precision (soft) and that the
remaining sensors were high-precision (hard).

For BME, it is necessary to choose how many neighbor
sensors we wish to consider in order to estimate the missing
value. We chose the three nearest sensors in all scenarios, and
as will be shown later (in Section V-D), this choice did not
significantly affect the results. The number of iterations in
PMF was set to 300 iterations in all the experiments, unless
specified. The experiments were run on a computer with an
Intel i5 Processor, 8GB RAM with Ubuntu 16.04 operating
system and MATLAB 2018a software.

V. RESULTS AND DISCUSSION

We evaluated our framework with three datasets from real-
world IoT scenarios. To do so, we introduced several per-
centages of missing values randomly distributed through each
sensor. The range of missing values introduced was 1-75%
of the available dataset, signifying that the experiments were
carried out 75 times for each dataset. We compare the methods
on the basis of the mean and standard deviation of RMSEs
computed over those 75 runs. Moreover, for all the datasets,
we considered a hard scenario in which all the sensors were
reliable, and a soft scenario, in which the majority of the
sensors contained uncertainties. For all the experiments, the
parameters of PMF were 300 iterations and K = 10. In the
case of BME, the number of neighboring sensors parameter
was 3 in both the hard and soft scenarios. Our experiments
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for the three datasets and the results for each of them are
discussed below.

A. Intel Berkeley Research Lab (IBRL)

The IBRL dataset was collected from sensors deployed in
the Intel Berkeley Research Laboratory from February 28 to
April 5, 20042. Mica2Dot sensors with weatherboards were
used to collect humidity, temperature, light and voltage values
(along with topological information) once every 31 seconds,
as shown in Fig. 3. A total of 2.3 million sensor readings were
collected from these sensors. Nodes marked in red are consid-
ered as hard sensors and those marked in black as soft sensors.
The sensors were deployed in a laboratory that has different
rooms, including a server room, a laboratory, a kitchen, storage
rooms, and offices. We used the temperature measurements
obtained from 51 sensors, with 10 minutes’ sampling and 1200
observations per sensor. The soft scenario was evaluated by
considering 10 hard sensors and the remaining 41 soft sensors.
The variogram parameters obtained from optimal fitting were
sill = 55.31, range= 10.48 and nugget = 0. The δ chosen to
create the soft data was δ = 1.5.

Hard sensor Soft sensor Discarded

51

48

53
8

9

49

46

45

44
43

42 41

39

24

23

22

21

19

17

12

14

11

10

6

4

2
3

50

47

13

+

40

26

54

20

16

1

7

52

38 34

37

36

35
33

32

31

30

29

28

27

25

Fig. 3. Illustrates the arrangement of sensors at Intel Berkeley Research
Laboratory (IBRL) between February 28th and April 5th, 2004. Mica2Dot
sensors with weatherboards were used to collect humidity, temperature,
light and voltage values (along with topological information) once every 31
seconds. Nodes marked in red are considered as hard sensors and those marked
in black as soft sensors.

For PMF, we apply k-means at 51 sensor locations in order
to cluster them according to their coordinates as required by
the PMF algorithm [34]. Table I shows the mean and standard
deviation for both the hard and soft scenarios for the PMF
method. Fig. 4 visually represents the PMF results for the
hard-scenario using box plots. Fig. 5 shows the mean RMSE
for both PMF and our BME-based framework for each missing
value percentage. As can be seen in Table I and Fig. 4, the
best result for PMF is obtained for 5 clusters in both hard and
soft scenarios. However, its lowest RMSE (best result) for both
hard (µ = 1.4, sd = 0.09) and soft (µ = 1.71, sd = 0.09) is
still quite high when compared with the performance of the
proposed BME hard (µ = 0.93, sd = 0.1) and soft (µ = 0.97,
sd = 0.1) RMSE (see Fig. 5).

Fig. 6 illustrates the running time required for PMF (for 5
clusters, which is the best case) and BME for both the hard
and soft scenarios for 1 to 75 percent of missing values. In Fig.

2http://db.csail.mit.edu/labdata/labdata.html

TABLE I
IBRL DATASET: RMSE MEAN AND STANDARD DEVIATION OBATINED FOR
THE PMF APPROACH FOR DIFFERENT NUMBERS OF CLUSTERS. MISSING

VALUES VARY FROM 1 TO 75%. BOLD TEXT INDICATES THE BEST VALUES
(i.e., THE LOWEST ERROR).

Number of PMF hard PMF soft
clusters mean (std) mean (std)

1 2.45 (0.04) 2.75 (0.05)

2 2.2 (0.04) 2.66 (0.05)

3 2.25 (0.06) 2.51 (0.06)

4 1.94 (0.03) 2.26 (0.04)

5 1.4 (0.09) 1.71 (0.09)
6 1.41 (0.15) 1.83 (0.15)

7 1.54 (0.2) 1.91 (0.2)

8 2.14 (0.39) 2.37 (0.43)

9 1.62 (0.4) 2.06 (0.35)

10 1.68 (0.36) 2.12 (0.39)

11 2.12 (0.37) 2.51 (0.49)

12 1.91 (0.39) 2.37 (0.34)

13 2.14 (0.33) 2.6 (0.37)

14 2.02 (0.56) 2.29 (0.5)

15 2.21 (0.57) 2.66 (0.53)

6, it is evident that the computation time of BME for a hard
scenario is within the range 0.26 to 12.08 seconds, whereas for
the PMF hard scenario, it ranges from 16.22 to 49.1 seconds.
This evidence proves the superiority of BME based on the
execution time for the hard scenario. Please note that the
running time of PMF reported in Fig. 6 does not take into
account the fact that PMF has to be run with several cluster
configurations, which further increases its computational cost.
In the case of the PMF approach, there are no significant
differences between the running times of the hard and soft
scenarios, as PMF does not incorporate measurement errors
and thus considers both hard and soft data in a similar manner.
However, it is possible to see the increased computational time
for the BME soft scenario, in which the computational time
ranges from 0.92 to 33.06 seconds. When more than 50% of
the data is missing, the computation time of BME is higher
than that of PMF for the soft scenario. However, this should
not occur in real scenarios, since if more than half of the data
missing, then the sensor no longer functions or has not been
functioning for a long period of time.

The PMF method may not yield the same estimate during
different iterations owing to the initial randomness present in
the matrices U and V (defined in Step 3 of the PMF algorithm,
Section II-C). It is therefore, necessary to compute several
iterations in order to obtain robust results. We validated this
by running PMF 100 times so as to estimate the missing values
for each iteration. The parameters chosen for this experiment
were 10% missing values, 5 clusters (best case). Fig. 7 shows
the box-plot for the RMSE values and the average run-time
(over 100 iterations). The number of iterations was chosen
experimentally, according to the results obtained, since at 300
iterations PMF already exceeded the running time of BME
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Fig. 4. IBRL dataset: RMSE values obtained for PMF approach for different
number of clusters (k) in the hard scenario. Missing values vary from 1 to
75 %, and each boxplot corresponds to the mean and standard deviation of
75 RMSEs computed for each k.

Fig. 5. RMSE mean and standard deviation values for PMF (5 clusters) and
BME approaches using both hard and soft scenarios against the percentage
of missing values on the IBRL dataset.

Fig. 6. Running time required for PMF and BME approaches against the
percentage of missing values in the IBRL dataset. This shows that the running
time required is less for the BME hard scenario. PMF takes a similar time for
both the hard and soft scenario, as PMF does not distinguish between hard
and soft.

and the estimation errors were stable and higher than using
BME. As can be seen, the PMF model stabilizes only after 50
iterations and the lowest RMSE is achieved for 300 iterations,
at the expense of a higher running time (40 seconds).
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Fig. 7. Boxplot of RMSE values (for 100 iterations) obtained for PMF (hard
scenario) for 300 iterations with 5 nearest neighbors and 10% of missing
values on the IBRL dataset. The PMF model reaches stability only after 50
iterations and attains the lowest RMSE at 300 iterations.

B. Sensors Deployed at Docklands Library, Melbourne, Aus-
tralia

This dataset was collected from an IoT network deployed
in the City of Melbourne, Australia, for real-time urban
microclimate monitoring3 with the aim of studying the long
term micro-scale relation between canopy coverage and envi-
ronmental parameters [50]. The dataset included temperature,
humidity and luminosity sensor measurements collected from
four low-cost sensors, namely the Waspmote [54] coupled with
Smart Cities sensor board, at each 10 minutes interval. The
deployment locations of the sensor nodes are shown in Fig.
8. For this study, we have used the humidity measurements of
four sensor nodes. These data were resampled at 30 minute
intervals by averaging them in 30-minute windows, which
provided us with 1200 observations. Since measurements were
taken from low-cost, low-precision sensors, we consider all of
them to be soft sensors in the soft scenario.

Fig. 8. Deployment of four sensor nodes at a base station at the Docklands
Library, Melbourne Australia. The data was collected on 15 Dec 2014 and
26-Feb-2015 [55].

The variogram parameters obtained from optimal fitting on
this dataset were sill = 102.9, range = 19.78 and nugget = 0.
The δ chosen to create the soft data was δ = 1.5. Fig. 9 shows
the RMSE values for the PMF and BME-based method in both
scenarios for different percentages (1− 75) of missing values.
As can be seen, the RMSE values for BME are significantly
lower when compared to those of PMF. The mean and standard
deviation of the RMSE values for both the PMF hard scenario
(µ = 14.56, sd = 2.99) and the PMF soft scenario (µ =

3http://issnip.unimelb.edu.au/research_program/Internet_of_Things/iot_
deployment
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Fig. 9. Comparison of RMSE values for PMF and BME for hard and soft
scenarios, tested using the Docklands dataset. Note that the RMSE values are
significantly lower for BME when compared with PMF. This large difference
is attributed to the high variance in the sensor measurements and the fact
that BME handles the variance highly effectively in order to maintain a low
RMSE.
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Fig. 10. Comparison of running time (in seconds) of PMF and BME for hard
and soft scenarios, tested on the Docklands dataset. It is evident that BME
requires significantly less computational time when compared with PMF for
both hard and soft scenarios.

15.6, sd = 3.15) are high when compared with the BME hard
(µ = 5.04, sd = 0.33) and the BME soft scenario (µ = 6.17,
sd = 0.35). Note that the difference between the PMF and
BME RMSE values is much higher for the Dockland dataset
than for the IBRL dataset. This is because the IBRL data were
collected in a controlled environment (office); signifying that
the readings of all the sensors are pretty close to each other,
which does not lead to many differences in the performances of
the BME and PMF methods. However, for outdoor deployment
(as is the case of deployment at Docklands Library), where we
expect a higher variance between the measurements of each
sensor, the BME-based algorithm performs much better than
the PMF-based method. This demonstrates the effectiveness of
the BME-based imputation method for IoT outdoor scenarios.
Fig. 10 shows the running time for both the BME and the
PMF-based methods in both scenarios. Note that the running
time for BME is always lower than that of the PMF method in
both the hard and soft scenarios. The differences between soft
and hard running time for PMF are not significant, as there is
no difference in the number of computations carried out.

Fig. 11. Location of water temperature sensors on beaches along lakefront
of Chicago Lake Michigan.

C. Beach dataset

We extracted the hourly water temperature measurements
that are published in the City of Chicago’s open data portal4.
The sensor data is publicly available for use. The Chicago
Park District maintains sensors in the water at beaches along
the lakefront of Lake Michigan, Chicago. Fig. 11 depicts the
locations of these sensors. In this work, we considered 5 soft
sensors and 1 hard sensor for the soft scenario. The variogram
parameters obtained from optimal fitting were sill = 0.103,
range= 4.07 and nugget = 0. The δ chosen to create the soft
data was δ = 1. Figs. 12 and 13 show the RMSE values
and running time for PMF and BME-based methods in both
hard and soft scenario, respectively. The mean and standard
deviation of the RMSE values for the PMF hard scenario
(µ = 2.73, sd = 0.48) and soft scenario (µ = 4.85, sd = 1)
are higher than those of the BME hard (µ = 2.4, sd = 0.2)
and soft scenario (µ = 2.47, sd = 0.23). Although the RMSE
values were initially close in the hard scenario for both PMF
and BME, they started separating further as the percentage
of missing values surpassed 15%. However, BME performed
much better (it provided significantly less RMSE) than PMF in
the soft scenario, in which the majority of the sensors were soft
sensors (low-precision measurements), which is often the case
in modern IoT deployments. As occurred with the IBRL and
Docklands datasets, the BME was much faster (lower running
time) than the PMF-based method in both scenarios (see Fig.
13).

D. Effect of BME Parameters on Computation Speeds

As mentioned in Section IV-A, BME uses the spatiotem-
poral property of the neighboring sensors in its estimation,
signifying that BME requires the input choice of the maximum

4https://data.cityofchicago.org/
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Fig. 12. Comparison of RMSE values for PMF and BME in hard and soft
scenarios tested with the Beach dataset. As the percentage of missing values
increases, the RMSE values for PMF increases at a much higher rate, when
compared with those for BME.
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Fig. 13. Comparison of running time (in seconds) for PMF and BME in hard
and soft scenarios tested with the Beach dataset. BME performs much better
than PMF in both hard and soft scenarios.

number of neighboring sensors. In this experiment, we study
how the choice of the maximum number of neighbors affects
BME estimation when 10 % of the data are missing. Table II
shows the average RMSE values and running time for all the
three datasets for different (maximum) numbers of neighboring
hard sensors, varying from 1 to 6, and the running time of
BME (in seconds). Note that the RMSE decreases with the in-
creasing number of neighboring sensors, and does not change
much with more than 3 neighboring sensors. The lowest
RMSE can be achieved by using higher number of neighboring
sensors but that will also increase the computational-time for
BME estimation. Table III shows the average RMSE values
and running time for all three datasets for different maximum
number of neighbouring soft sensors varying from 1 to 6. As
occurred in the hard scenario, the RMSE values do not change
much with more than 3 neighboring soft sensors. Considering
the trade-off between accuracy and running time, we chose
3 as the maximum number of neighboring sensors in all our
experiments in both the hard and soft scenario.

BME has only one tuning parameter (number of neighbors),
which does not affect BME estimation performance; however,
PMF has many parameters such as the number of clusters,
the number of iterations or the RMSE threshold, the number
of latent feature vectors K, step value α, and the mean and

TABLE II
COMPARISON OF RMSE VALUES AND RUNNING TIME (IN SECONDS) OF

HARD BME. THE EVALUATION INCLUDED VARYING THE MAXIMUM
NUMBER OF HARD NEIGHBORS WITH 10 % OF MISSING DATA.

Maximum number of hard neighbors
Metric Dataset 1 2 3 4 5 6

RMSE
IBRL 1.11 0.87 0.81 0.78 0.77 0.77
Docklands 5.35 4.64 4.41 4.41 - -
Beach 2.98 2.56 2.33 2.31 2.29 2.29

Running time
(in seconds)

IBRL 2.39 2.81 2.84 2.9 2.87 2.88
Docklands 0.19 0.23 0.2 0.21 - -
Beach 0.28 0.38 0.59 0.33 0.34 0.31

TABLE III
COMPARISON OF RMSE VALUES AND RUNNING TIME (IN SECONDS) OF

SOFT BME. THE EVALUATION INCLUDED VARYING THE MAXIMUM
NUMBER OF SOFT NEIGHBORS WITH 10 % OF MISSING DATA AND

MAXIMUM NUMBER OF HARD NEIGHBORS FIXED AT 3.

Maximum number of soft neighbors
Metric Dataset 1 2 3 4 5 6

RMSE
IBRL 0.97 0.87 0.85 0.84 0.83 0.83

Docklands 6.68 5.85 5.54 5.54 - -
Beach 2.74 2.40 2.37 2.33 2.33 2.33

Runing time
(in seconds)

IBRL 10.2 10.8 11.11 11.68 13.08 15.7
Docklands 0.58 0.56 0.57 0.59 - -

Beach 1.02 1.16 1.11 1.19 1.24 1.24

standard deviation for the random matrix R that need to be
tuned in order to attain a desirable PMF performance. This
shows that BME is a more robust framework for the imputation
of missing data in a real-time IoT scenario.

In our experiments, we used the BME framework as a
centralized approach in which all the missing values were
estimated simultaneously on a machine using neighboring
sensors and their measurements at corresponding instants. In
our prior work [14], we implemented a distributed approach
BME algorithm in which each sensor could estimate its
missing value by using neighborhood sensors iteratively in the
time-domain. Moreover, the distributed approach can also be
implemented on the sensor board itself for online, in-network
processing. We are, therefore, of the firm opinion that the
BME-based framework could be very useful for online missing
data imputation in IoT scenarios. In this distributed approach,
once the variograms have been computed, BME requires only
the instant readings of neighboring sensors in order to estimate
the missing values. The distributed approach of BME can also
be implemented on a sensor board for in-network processing.

Our future work will include an in-depth study of how the
variogram fit would influence the estimations. We also aim to
analytically study the effect of the experimental imitation of
the missing values in real-time systems.

VI. CONCLUSION

Missing value imputation is a well-known issue that has
been studied in the past. However, the continuously evolving
IoT applications pose new challenges, which limit the per-
formance of existing techniques, such as Probability Matrix
Factorization (PMF) and Kriging. In this article, we presented
a new framework with which to impute the missing values
of sensors using the Bayesian Maximum Entropy (BME)
technique. The BME technique handles data uncertainty very
well in its estimation and also requires less computational time
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and a single parameter as input for the model, thus making
the BME framework well suited to real IoT deployments. We
have compared the performance of our BME-based framework
with a state-of-the-art method (i.e., the PMF approach) for
missing data imputation in IoT applications and we have
found that the BME approach outperforms it as regards: (1)
estimating the missing values, (2) requiring significantly less
computational time, (3) managing data variance robustly, and
(4) managing estimation with a single model parameter. Our
results are based on our research and the experiments that
we conducted with three real datasets that have different IoT
contexts and origins (indoor and outdoor applied to a wide
range of applications). The results attained after experimenting
with these datasets demonstrate the superiority of the BME
framework as regards accuracy, running time, and robustness.
Our framework can also be extended to distributed IoT nodes
for the online imputation of missing values.

REFERENCES

[1] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of things
(iot): A vision, architectural elements, and future directions,” Future
generation computer systems, vol. 29, no. 7, pp. 1645–1660, 2013.

[2] IHS Markit, “Internet of Things (IoT) connected devices installed
base worldwide from 2015 to 2025 (in billions),” 2016, last accessed
18 July 2019. [Online]. Available: https://www.statista.com/statistics/
471264/iot-number-of-connected-devices-worldwide/

[3] K. Kambatla, G. Kollias, V. Kumar, and A. Grama, “Trends in big data
analytics,” Journal of Parallel and Distributed Computing, vol. 74, no. 7,
pp. 2561–2573, 2014.

[4] T. C. Havens, J. C. Bezdek, C. Leckie, L. O. Hall, and M. Palaniswami,
“Fuzzy c-means algorithms for very large data,” IEEE Transactions on
Fuzzy Systems, vol. 20, no. 6, pp. 1130–1146, 2012.

[5] J. Jin, J. Gubbi, S. Marusic, and M. Palaniswami, “An information
framework for creating a smart city through internet of things,” IEEE
Internet of Things journal, vol. 1, no. 2, pp. 112–121, 2014.

[6] A. González-Vidal, F. Jiménez, and A. F. Gómez-Skarmeta, “A method-
ology for energy multivariate time series forecasting in smart buildings
based on feature selection,” Energy and Buildings, vol. 196, pp. 71–82,
2019.

[7] A. González-Vidal, A. P. Ramallo-González, F. Terroso-Sáenz, and
A. Skarmeta, “Data driven modeling for energy consumption prediction
in smart buildings,” in 2017 IEEE International Conference on Big Data
(Big Data). IEEE, 2017, pp. 4562–4569.

[8] A. Tzounis, N. Katsoulas, T. Bartzanas, and C. Kittas, “Internet of
things in agriculture, recent advances and future challenges,” Biosystems
Engineering, vol. 164, pp. 31–48, 2017.

[9] B. V. Philip, T. Alpcan, J. Jin, and M. Palaniswami, “Distributed real-
time iot for autonomous vehicles,” IEEE Transactions on Industrial
Informatics, vol. 15, no. 2, pp. 1131–1140, 2018.

[10] A. Vafaeinejad, “Dynamic guidance of an autonomous vehicle with
spatio-temporal gis,” in International Conference on Computational
Science and Its Applications. Springer, 2017, pp. 502–511.

[11] A. S. Rao, S. Marshall, J. Gubbi, M. Palaniswami, R. Sinnott, and
V. Pettigrovet, “Design of low-cost autonomous water quality monitoring
system,” in 2013 International Conference on Advances in Computing,
Communications and Informatics (ICACCI). IEEE, 2013, pp. 14–19.

[12] A. González-Vidal, J. Cuenca-Jara, and A. F. Skarmeta, “Iot for water
management: Towards intelligent anomaly detection,” in 2019 IEEE 5th
World Forum on Internet of Things (WF-IoT). IEEE, 2019, pp. 858–
863.

[13] A. S. Rao, J. Gubbi, T. Ngo, P. Mendis, and M. Palaniswami, “Internet of
things for structural health monitoring,” in Structural Health Monitoring
Technologies and Next-Generation Smart Composite Structures. CRC
Press, 2016, pp. 89–120.

[14] P. Rathore, D. Kumar, S. Rajasegarar, and M. Palaniswami, “Maximum
entropy-based auto drift correction using high-and low-precision sen-
sors,” ACM Transactions on Sensor Networks (TOSN), vol. 13, no. 3,
p. 24, 2017.

[15] P. J. García-Laencina, J.-L. Sancho-Gómez, and A. R. Figueiras-Vidal,
“Pattern classification with missing data: a review,” Neural Computing
and Applications, vol. 19, no. 2, pp. 263–282, 2010.

[16] R. J. Little and D. B. Rubin, Statistical analysis with missing data. John
Wiley & Sons, 2019, vol. 793.

[17] T. M. Cover and P. Hart, “Nearest neighbor pattern classification,” IEEE
Transactions on Information Theory, vol. 13, no. 1, pp. 21–27, 1967.

[18] L. Pan and J. Li, “K-nearest neighbor based missing data estimation
algorithm in wireless sensor networks,” Wireless Sensor Network, vol. 2,
no. 02, p. 115, 2010.

[19] D. L. Donoho et al., “Compressed sensing,” IEEE Transactions on
information theory, vol. 52, no. 4, pp. 1289–1306, 2006.

[20] L. Kong, M. Xia, X.-Y. Liu, M.-Y. Wu, and X. Liu, “Data loss
and reconstruction in sensor networks,” in 2013 Proceedings IEEE
INFOCOM. IEEE, 2013, pp. 1654–1662.

[21] P. Vamplew and A. Adams, “Missing values in a backpropagation
neural net,” in Proceedings of the 3rd. Australian Conference on Neural
Networks (ACNN), I, 1992, pp. 64–66.

[22] J. Yoon, J. Jordon, and M. Van Der Schaar, “Gain: Missing data imputa-
tion using generative adversarial nets,” arXiv preprint arXiv:1806.02920,
2018.

[23] L. Z. Wong, H. Chen, S. Lin, and D. C. Chen, “Imputing missing values
in sensor networks using sparse data representations,” in Proceedings
of the 17th ACM international conference on Modeling, analysis and
simulation of wireless and mobile systems. ACM, 2014, pp. 227–230.

[24] A. Ramallo-González, “New method to reconstruct building environ-
mental data,” in Buildign Simulation International Conference BS2015,
University of Bath, 2015.

[25] C.-Y. Li, W.-L. Su, T. G. McKenzie, F.-C. Hsu, S.-D. Lin, J. Y.-j. Hsu,
and P. B. Gibbons, “Recommending missing sensor values,” in 2015
IEEE International Conference on Big Data (Big Data). IEEE, 2015,
pp. 381–390.

[26] J. A. Manrique, J. S. Rueda-Rueda, and J. M. Portocarrero, “Contrasting
internet of things and wireless sensor network from a conceptual
overview,” in 2016 IEEE International Conference on Internet of Things
(iThings) and IEEE Green Computing and Communications (GreenCom)
and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE
Smart Data (SmartData). IEEE, 2016, pp. 252–257.

[27] X. Yan, W. Xiong, L. Hu, F. Wang, and K. Zhao, “Missing value
imputation based on gaussian mixture model for the internet of things,”
Mathematical Problems in Engineering, vol. 2015, 2015.

[28] I. P. S. Mary and L. Arockiam, “Imputing the missing data in iot based
on the spatial and temporal correlation,” in Current Trends in Advanced
Computing (ICCTAC), 2017 IEEE International Conference on. IEEE,
2017, pp. 1–4.

[29] P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, and J. Riedl, “Grou-
plens: an open architecture for collaborative filtering of netnews,” in
Proceedings of the 1994 ACM conference on Computer supported
cooperative work. ACM, 1994, pp. 175–186.

[30] J. S. Breese, D. Heckerman, and C. Kadie, “Empirical analysis of
predictive algorithms for collaborative filtering,” in Proceedings of the
Fourteenth conference on Uncertainty in artificial intelligence. Morgan
Kaufmann Publishers Inc., 1998, pp. 43–52.

[31] D. Billsus and M. J. Pazzani, “Learning collaborative information
filters.” in Icml, vol. 98, 1998, pp. 46–54.

[32] H. Ma, I. King, and M. R. Lyu, “Effective missing data prediction for
collaborative filtering,” in Proceedings of the 30th annual international
ACM SIGIR conference on Research and development in information
retrieval. ACM, 2007, pp. 39–46.

[33] A. Mnih and R. R. Salakhutdinov, “Probabilistic matrix factorization,”
in Advances in neural information processing systems, 2008, pp. 1257–
1264.

[34] B. Fekade, T. Maksymyuk, M. Kyryk, and M. Jo, “Probabilistic recovery
of incomplete sensed data in iot,” IEEE Internet of Things Journal, 2017.

[35] R. A. Olea, Geostatistics for engineers and earth scientists. Springer
Science & Business Media, 2012.

[36] H. Yang, J. Yang, L. D. Han, X. Liu, L. Pu, S.-m. Chin, and H.-l.
Hwang, “A kriging based spatiotemporal approach for traffic volume
data imputation,” PloS one, vol. 13, no. 4, p. e0195957, 2018.

[37] M. Ardakani, A. Shokry, G. Saki, G. Escudero, M. Graells, and
A. Espuña, “Imputation of missing data with ordinary kriging for
enhancing fault detection and diagnosis,” in Computer Aided Chemical
Engineering. Elsevier, 2016, vol. 38, pp. 1377–1382.

[38] G. Christakos and X. Li, “Bayesian maximum entropy analysis and
mapping: a farewell to kriging estimators?” Mathematical Geology,
vol. 30, no. 4, pp. 435–462, 1998.

[39] G. Christakos, Modern spatiotemporal geostatistics. Oxford University
Press, 2000, vol. 6.

The final version of this article is available at  http://dx.doi.org/10.1109/JIOT.2020.2987979

https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/
https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/


13

[40] J. He and A. Kolovos, “Bayesian maximum entropy approach and its
applications: a review,” Stochastic Environmental Research and Risk
Assessment, vol. 32, no. 4, pp. 859–877, 2018.

[41] A. d. Nazelle, S. Arunachalam, and M. L. Serre, “Bayesian maximum
entropy integration of ozone observations and model predictions: an ap-
plication for attainment demonstration in north carolina,” Environmental
science & technology, vol. 44, no. 15, pp. 5707–5713, 2010.

[42] K. Modis, K. Vatalis, and C. Sachanidis, “Spatiotemporal risk assess-
ment of soil pollution in a lignite mining region using a bayesian
maximum entropy (bme) approach,” International Journal of Coal
Geology, vol. 112, pp. 173–179, 2013.

[43] A. Zagouras, A. Kolovos, and C. F. Coimbra, “Objective framework for
optimal distribution of solar irradiance monitoring networks,” Renewable
Energy, vol. 80, pp. 153–165, 2015.

[44] Y. Akita, J.-C. Chen, and M. L. Serre, “The moving-window bayesian
maximum entropy framework: estimation of pm 2.5 yearly average
concentration across the contiguous united states,” Journal of Exposure
Science and Environmental Epidemiology, vol. 22, no. 5, p. 496, 2012.

[45] M. L. Serre and G. Christakos, “Modern geostatistics: computational
bme analysis in the light of uncertain physical knowledge–the equus
beds study,” Stochastic Environmental Research and Risk Assessment,
vol. 13, no. 1-2, pp. 1–26, 1999.

[46] S. Waldrip and R. Niven, “Comparison between bayesian and maximum
entropy analyses of flow networks,” Entropy, vol. 19, no. 2, p. 58, 2017.

[47] C. E. Shannon, “A mathematical theory of communication,” Bell system
technical journal, vol. 27, no. 3, pp. 379–423, 1948.

[48] N. Cressie, “Statistics for spatial data: Wiley series in probability and
statistics wiley-interscience,” NY, vol. 15, pp. 105–209, 1993.

[49] I. Clark, Practical geostatistics. Applied Science Publishers London,
1979, vol. 3.

[50] P. Rathore, A. S. Rao, S. Rajasegarar, E. Vanz, J. Gubbi, and
M. Palaniswami, “Real-time urban microclimate analysis using internet
of things,” IEEE Internet of Things Journal, vol. 5, no. 2, pp. 500–511,
2018.

[51] N. Cressie, “Fitting variogram models by weighted least squares,”
Journal of the International Association for Mathematical Geology,
vol. 17, no. 5, pp. 563–586, 1985.

[52] B. Shamo, E. Asa, and J. Membah, “Linear spatial interpolation and
analysis of annual average daily traffic data,” Journal of Computing in
Civil Engineering, vol. 29, no. 1, p. 04014022, 2012.

[53] J. Hu, J. Zhou, G. Zhou, Y. Luo, X. Xu, P. Li, and J. Liang, “Improving
estimations of spatial distribution of soil respiration using the bayesian
maximum entropy algorithm and soil temperature as auxiliary data,”
PloS one, vol. 11, no. 1, p. e0146589, 2016.

[54] Libelium, “Waspmote,” http://www.libelium.com/products/waspmote/,
2016.

[55] A. Shilton, S. Rajasegarar, C. Leckie, and M. Palaniswami, “Dp1svm: A
dynamic planar one-class support vector machine for internet of things
environment,” in 2015 International Conference on Recent Advances in
Internet of Things (RIoT). IEEE, 2015, pp. 1–6.

The final version of this article is available at  http://dx.doi.org/10.1109/JIOT.2020.2987979

http://www.libelium.com/products/waspmote/

	Introduction
	Related Work
	Imputations of Missing Data in WSN
	Imputation of Missing Data in IoT Systems
	Probability Matrix Factorization (PMF) for Missing Data Imputation
	Limitations of PMF in IoT Use Cases

	Our Approach: A BME Framework for the Recovery of Missing Data
	BME modelling
	Advantages of proposed BME framework 

	Experimental Setup
	Metrics and Implementation

	 Results and Discussion
	Intel Berkeley Research Lab (IBRL)
	Sensors Deployed at Docklands Library, Melbourne, Australia
	Beach dataset
	Effect of BME Parameters on Computation Speeds

	Conclusion
	References



