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Abstract—Atrial fibrillation (AF) is a significant risk factor for
ischemic stroke recurrence, yet its diagnosis remains challenging
through short-term heart monitoring due to its often paroxysmal
and silent nature. Despite its diagnostic superiority, prolonged
cardiac monitoring is typically impractical and not cost-effective
for widespread implementation. We propose a novel AF risk
stratification framework using a multimodal deep learning ap-
proach that integrates diffusion-weighted imaging (DWI) of the
brain with clinical patient data. Our methodology combines
convolutional neural networks (CNNs) for image analysis and
gradient-boosted decision trees (GBDT) for clinical data, lever-
aging an innovative fusion strategy and an auxiliary loss function
based on infarct location. The proposed approach achieves
an area under the receiver operating characteristic (AUROC)
of 89.18%, outperforming unimodal counterparts. This work
contributes to the field by enabling AF risk stratification from
brain DWI, utilizing weak supervision, and introducing a novel
early and late-stage data fusion approach. Our method easily
integrates with existing workflows and can identify high-risk
individuals requiring intensive cardiac monitoring.

Index Terms—Atrial fibrillation (AF), ischemic stroke,
diffusion-weighted imaging (DWI), decision trees, and multi-
modal deep learning.

I. INTRODUCTION

Atrial Fibrillation (AF) is a common and significant risk

factor for ischemic stroke [1], [2]. Detecting AF is critical for

secondary stroke prevention. Yet, it remains a challenge due

to the intermittent and silent nature of many AF episodes and

the limitations of traditional monitoring methods that heavily

rely on monitoring length. Moreover, these methods are often

costly or invasive. In clinical practice, the timely and accurate

identification of AF can be difficult, leading to potential delays

in treatment and increased risk of recurrent strokes. Due to

the impracticality of prolonged heart monitoring for all stroke

patients, a comprehensive AF risk stratification framework is

crucial to identify individuals who would benefit from long-

term cardiac monitoring [3]. Such a framework would not

only optimize resource allocation but also enable targeted

preventive strategies for high-risk patients.

Brain magnetic resonance imaging (MRI), and mainly,

diffusion-weighted imaging (DWI) offer superior resolution

and sensitivity for detecting early ischemic changes, allow-

ing for more precise identification of infarct regions [4],

[5] compared to computed tomography (CT) scans. DWI

is particularly valuable as it corroborates clinical diagnoses

and uncovers ischemic patterns that provide insights into the

stroke’s underlying cause [6]–[10]. While MRI-DWI imaging

provides crucial insights into stroke etiology, the specific

ischemic patterns indicative of atrial fibrillation remain incom-

pletely characterized. Consequently, it remains challenging for

clinicians to identify AF solely from imaging scans.

While deep learning (DL) models have shown potential in

identifying AF from brain MRI, research in this application

remains limited [11], [12]. Further, relying solely on imaging

analysis potentially overlooks crucial patient-specific risk fac-

tors and limits interpretability, which is essential in clinical

decision-making. Therefore, fusing clinical patient data with

imaging analysis enhances AF risk stratification by providing

a more comprehensive context, improving interpretability, and

potentially enabling identification of patient subgroups. This

multimodal approach not only increases accuracy [13], [14]

but also allows for more personalized and nuanced stroke

management strategies, considering both imaging findings and

individual clinical risk factors.

We propose a novel multimodal approach for AF risk

stratification in post-stroke patients by fusing brain DWI and

clinical data. Our model integrates a convolutional neural

network (CNN) for image processing with a gradient boosted

decision tree (GBDT) for clinical data analysis, leveraging

the strengths of both architectures. The CNN model processes

brain DWI images and produces a logit, which is used in two

ways: 1) to generate an image-based AF likelihood probability

via softmax, and 2) as an input feature for the GBDT,

combined with clinical data. Finally, the class probabilities

from the CNN and GBDT models are averaged, effectively

ensembling the two approaches to produce the final AF

likelihood probabilities. The contributions of this work are:

• A novel multimodal approach for post-stroke AF risk

stratification, integrating brain DWI and clinical data

through CNNs and GBDTs, achieving superior perfor-

mance (89.18% AUROC) over unimodal methods.

• An innovative data fusion technique featuring unique

early and late-stage fusion, combining strengths of CNN

and GBDT models to enhance overall predictive power.

• Introduction of an auxiliary loss function based on in-

farct location, eliminating the need for time-consuming



segmentation masks and improving efficiency.

• Enhanced clinical interpretability through SHapley Addi-

tive exPlanations (SHAP) analysis, providing insights into

feature interactions and their roles in AF prediction, thus

aiding in transparent and explainable clinical decision-

making.

• Improved clinical workflow integration, identifying high-

risk individuals for intensive cardiac monitoring while

leveraging GBDT’s feature importance for actionable

insights.

II. RELATED WORKS

A. AF Identification

Despite the vast amount of research conducted in deep

learning applications in stroke imaging, only two concurrent

works that align with our approach for AF identification from

stroke imaging are published in the literature. Zhang et al.

[11] combine extracted features using a CNN model with

radiomic features to identify AF from brain MRI, achieving

an AUROC of 79.9%. Their approach relies on costly, time-

consuming segmentation masks for radiomic features and

excludes clinical data crucial for stroke and AF management.

The lack of detailed discussion on methodology, dataset, and

results hinders a thorough assessment of its contributions.

Similarly, Kuo et al. [12] build a small dataset of 29 patients

to differentiate between cancer-associated thrombosis (CAT)

and AF-related strokes, subgroups of embolic strokes. They

achieve an AUROC of 74.44% and 82.5% when using DWI

images only or DWI images combined with clinical data,

respectively. Fundamental limitations include a small dataset,

the rarity of CAT-related strokes compared to AF-related ones,

and excluding non-embolic stroke etiologies. These factors

may introduce bias in the results.

Although both studies demonstrate the potential of using

brain MRI in AF identification, the limitations necessitate

further research to develop an efficient multimodal classifi-

cation framework to detect the underlying AF by integrating

clinical data and brain MRI. Additionally, acquiring precise

segmentation of infarct regions in clinical practice (as in [11])

is challenging and often not feasible. As a result, alternative

methods for AF identification need to be developed.

B. Fusion Algorithms

Algorithmic choice is crucial in maximizing the benefits of

multimodal data fusion. For example, CNNs excel in image

analysis by automatically extracting and learning hierarchical

features from complex imaging data. GBDTs stand out in

tabular data analysis due to their more robust performance

and better interpretability [15].

Neural networks and GBDTs have been employed together

in unimodal tasks, with one handling feature extraction while

the other predicting the outcome [16]–[21]. Some studies have

also explored joint training of GBDTs and neural networks

[22]. Most existing works fuse data at the decision level, com-

bining predictions from GBDTs and other models for different

modalities rather than integrating the features. Consequently,

TABLE I
DATASET DEMOGRAPHICS AND BASELINE VARIABLES IN ATRIAL

FIBRILLATION (AF) AND LARGE-ARTERY ATHEROSCLEROSIS (LAA)
GROUPS, INCLUDING VASCULAR RISK FACTORS AND STROKE LOCATION.

Parameter AF (137) LAA (93)

Age (SD) 75.5 (11.3) 64.5 (15.3)

Female sex 52 (37.9%) 28 (30.1%)

Hypertension 85 (62%) 57 (61.2%)

Ischemic heart disease 24 (17.5%) 12 (12.9%)

Congestive heart failure 11 (8%) 1 (1%)

Previous stroke 18 (13.1%) 17 (18.2%)

Previous transient ischemic attack (TIA) 15 (10.9%) 5 (5.3%)

Diabetes 32 (23.3%) 31 (33.3%)

Stroke location

Left 58 (42.3%) 42 (45.1%)

Right 52 (37.9%) 29 (31.1%)

Bilateral 5 (3.6%) 6 (6.4%)

Posterior circulation 22 (16%) 16 (17.2%)

this may lead to the loss of potential insights derived from the

interaction between different modalities. On the other hand, Xu

et al. [23] used CNNs to extract features and fed these into

GBDT and a classification head, generating two independent

class probabilities that are later averaged. Although promising,

to our knowledge, this strategy has not yet been applied to

multimodal data fusion.

III. METHODOLOGY

A. Data Collection

A retrospective dataset of 230 post-stroke patients was col-

lected to develop a multimodal AF identification framework.

The ethics approval was obtained from the Royal Melbourne

Hospital Ethics Committee (QA 2013.072). For each patient,

a DWI image acquired during the acute phase of the stroke,

along with demographics and clinical history, was utilized for

model development. Table I provides the details and patient

history.

DWI images were obtained using five scanners (Siemens

Aera, Siemens Prisma Fit, Siemens Skyra, Siemens Magnetom

Essenza, and Philips Ingenia) because some patients were

transferred from other hospitals. The imaging parameters used

in this study included magnetic field strengths of 1.5 or 3 Tesla,

repetition time ranging from 4100 to 7920 ms, echo time from

55 to 104 ms, flip angles of 0 or 180 degrees, b-values of 0 or

1,000 sec/mm2, slice thicknesses of 0.256 to 7.474 mm, slice

spacing of 2 to 7.5 mm, and pixel spacing of 0.548 to 2 mm.

The dataset was annotated using the causative classification

of stroke (CCS) system [24], focusing on AF as the target

class and large-artery atherosclerosis (LAA) as the control

group, while excluding all other stroke etiologies. We chose

the Causative Classification of Stroke (CCS) system [24] for

dataset annotation due to its superior accuracy in categorizing

stroke etiologies compared to Trial of Org 10172 in Acute

Stroke Treatment (TOAST) [25] and Atherosclerosis, Small-

vessel disease, Cardiac source, and Other cause (ASCO)

[26] systems. Our study focused on LAA and AF subtypes,
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Fig. 1. Overview of our multimodal (combining image and clinical data) model for AF risk stratification. A CNN processes brain DWI images, extracting
features for multiple purposes: generating image-based class probabilities, feeding into a GBDT model alongside clinical data, and predicting infarct location
(left, right, bilateral, or posterior circulation) for auxiliary loss calculation. The final AF likelihood (AF vs. non-AF) is determined by weighted averaging
(using α) the CNN and GBDT outputs. β is a weight used to combine average pooling and max pooling, and is set to 0.5. (CNN: convolutional neural
network, DWI: diffusion-weighted imaging, GBDT: gradient boosting decision tree, AF: atrial fibrillation)

excluding others, due to their higher recurrence rates, severity,

and the significant impact of early intervention. Although

limited, our focus represents the first attempt to develop a

fully automated risk stratification framework for AF from brain

MRI scans. Starting with LAA and AF allowed us to establish

a robust foundation with reliable ground truth data, setting the

stage for future expansion to include other stroke subtypes and

enhance the model’s clinical applicability.

B. Data Preprocessing

All DWI images were resampled to [8mm, 1.5mm, 1.5mm]

using nearest neighbor interpolation to maintain voxel con-

sistency. Further, the images were resized to a shape of (32,

256, 256), ensuring uniform input dimensions for the CNN

model and their intensity values were normalized using Z-

transform. During training, we applied elastic deformations,

random flips in all three planes, random 90-degree rotations,

Gaussian noise addition, random scaling, and cropping to

enhance the model’s generalization capability. For the clinical

data, the numerical feature, i.e. the ‘Age’ was scaled using Z-

transform, and categorical variables were converted into binary

representations. Furthermore, missing values were imputed

using the mode of the corresponding column.

C. Multimodal AF Identification Network

Our novel multimodal approach for AF risk stratification in

post-stroke patients integrates brain DWI with clinical data,

using CNNs for image analysis and GBDTs for clinical data

processing (shown in Fig. 1). The CNN backbone processes

DWI images, producing a logit to generate image-based class

probability, feed into the GBDT model, and predict infarct

location for auxiliary loss calculation. We use pre-trained 3D

ResNet models from medical image segmentation networks

[27]. The CNN output logit is concatenated with clinical

data and fed into a GBDT model, which produces its class

probability. Then, the final class probability, ŷ, is obtained by

weighted averaging (α) the outputs from both models using:

ŷ = α ∗ outCNN + (1− α) ∗ outGBDT. (1)

D. Loss Function

We incorporate a weak, image-level integer label indicating

infarct location to guide the CNN’s focus without detailed

annotations. This label specifies stroke hemisphere involve-

ment (left, right, bilateral, or posterior circulation). Using a

cross-entropy loss function, we use this label to introduce

an auxiliary infarct location-based loss, LILL. Using cross-

entropy loss function. The AF identification loss, LAF , is also

calculated using the binary cross entropy loss function. The

auxiliary loss is multiplied by hyperparameter λ and added

to the AF loss to calculate the total loss function used for

updating the model’s weights, as shown below:

LT = LAF + λLILL. (2)

IV. EXPERIMENTS AND RESULTS

We perform extensive experiments to assess the effective-

ness of our proposed method. Standard binary classification

metrics are used to evaluate the performance of the AF identifi-

cation framework. Notably, AUROC evaluates the model’s per-

formance independently of the classification threshold. Since

probability estimates are more relevant than class labels in our

AF risk stratification approach, AUROC performs as the key

metric.

A. Implementation Details

The dataset was split (using stratified sampling) into five

folds (20% each), where one fold was used for testing while

the others were used for training. Within each training set, a

further division was made into a training (90%) and validation

(10%) set for hyperparameter tuning, allowing for evaluation

of model performance on unseen data while optimizing pa-

rameters and performing early stopping based on a validation

subset. The experiments were repeated five times, each using a

different fold for testing. Finally, the five experiments’ results

were aggregated and reported as mean ± standard deviation.

Adam optimizer was used with an initial learning rate of

0.0001, a weight decay of 0.01, a step scheduler for the

learning rate with a step size of 20, and a decay rate of 0.8.

The batch size was set to 16, and the models were trained for



TABLE II
PERFORMANCE COMPARISON: OUR METHODOLOGY OUTPERFORMS EXISTING DWI-BASED AND MULTIMODAL FRAMEWORKS IN THE LITERATURE.

Method Modality Accuracy Precision Recall F1 score AUROC

Zhang et al. [11] DWI 70 63.8 92.5 75.5 79.9

Kuo et al. [12] DWI 78.57 - 60 - 74.44

Kuo et al. [12] DWI and Clinical 85.71 - 75 - 82.50

Proposed DWI and Clinical 76.08± 4.55 77.58 ± 8.20 88.18± 12.65 81.27 ± 3.33 89.18 ± 5.57

TABLE III
PERFORMANCE COMPARISON OF MODELS, INCLUDING UNIMODAL RESNET34 AND GBDT, IMPACT OF AUXILIARY LOSS (λ = 0.1), MULTIMODAL

FUSION (DWI+CLINICAL) AND WEIGHTED AVERAGING (α = 0.7). THE PROPOSED MULTIMODAL (WITH RESNET34 + GBDT) MODEL PERFORMS BEST.

Method Accuracy Precision Recall F1 score AUROC

Unimodal (clinical data) with GBDT 59.56± 3.53 66.56± 3.81 66.28± 7.79 65.92± 2.94 64.61± 7.51

Unimodal (DWI) with ResNet34 75.65± 5.73 83.56 ± 7.64 76.53± 13.67 78.52± 5.68 82.84± 8.17

Unimodal (DWI) with ResNet34 & 0.1 ∗ LILL 71.73± 7.14 75.26± 10.77 82.78± 15.93 77.32± 7.23 84.71± 8.32

Multimodal with GBDT 78.69 ± 4.43 83.66 ± 6.43 81.71± 10.90 81.87 ± 4.17 87.62± 2.85

Multimodal with ResNet34 & GBDT (proposed) 76.08± 4.55 77.58± 8.20 88.18 ± 12.65 81.27 ± 3.33 89.18 ± 5.57

250 epochs, with early stopping applied based on validation

loss to prevent overfitting. To implement GBDT out of the box,

we utilized the XGBoost library [28] with its default settings.

B. Comparison with Previous Works

In our best model, ResNet34 is the CNN backbone, λ is set

to 0.1, and α is set to 0.7. We compare the results achieved

by this model with the existing works in the literature. The

datasets employed in these studies differ from the one utilized

in our research in several key aspects, such as the size,

the diversity of the data, and the specific features included.

Zhang et al. [11] did not provide sufficient methodological

details, which precludes the replication of their approach on

our dataset. Additionally, the method proposed by Kuo et al.

[12] exhibited suboptimal performance on our dataset. Their

published results are included to provide the context.

Table II demonstrates the efficacy and effectiveness of

the proposed method. Our unimodal and multimodal models

significantly outperform their counterparts in the literature. It

should also be noted that segmentation masks were not used

in this work, unlike Zhang et al. [11]. Moreover, the size of

our dataset is significantly larger than Kuo et al. [12] dataset,

and the control group in our study is LAA strokes as opposed

to CAT-related strokes, making our study more meaningful

regarding the clinical applicability.

C. Ablation Studies

Our comprehensive evaluation of the proposed approach

included experiments with unimodal image (DWI) and clini-

cal data-based models (ResNet34 and GBDTs, respectively),

an auxiliary loss function (λ = 0.1), multimodal data fu-

sion (DWI+clinical) for GBDTs, and weighted averaging of

ResNet34 and GBDT models (α = 0.7). Table III shows the

results.

Results showed that the GBDT model using clinical data

alone performed poorly, while the ResNet34 model trained

on DWI images significantly outperformed it. The auxiliary

loss improved the DWI-based model’s performance by 2%,

and the multimodal GBDT achieved a 3% gain over the

image-based model. The ensemble of unimodal ResNet34 and

multimodal GBDT models yielded the best results. Further

experiments with hyperparameters revealed that small weights

for the auxiliary loss improved performance by focusing on

infarct regions, with optimal results at λ = 0.1. Most models

performed best for model ensembling with α = 0.5, except

ResNet34, which achieved optimal results at α = 0.7.

D. Interpretability of the Proposed Method

We employed SHAP [29] to interpret the importance of

GBDT’s features. In the clinical-only model, we found ‘Age’

to be the most significant AF risk factor consistent with

clinical observations (p-value < 0.01). Upon adding image

features, we observed that the image features improved the

model performance and became the most significant predictor,

demonstrating the potential of brain DWI and fusion model for

AF risk stratification.

V. CONCLUSION

Our proposed multimodal deep learning framework offers

a promising solution for AF risk stratification by effectively

combining brain DWI and clinical data. Integrating CNNs

and GBDT with a novel fusion strategy and infarct location-

based auxiliary loss function enables superior predictive per-

formance. This approach outperforms unimodal methods and

seamlessly integrates into clinical workflows, providing a prac-

tical tool for identifying high-risk individuals who will benefit

from more intensive cardiac monitoring. Our approach aids in

automated AF diagnosis and secondary stroke prevention.



REFERENCES

[1] L. Friberg, M. Rosenqvist, A. Lindgren, A. Terént, B. Norrving, and
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