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Abstract. Wireless Sensor Networks (WSN) based Structural Health
Monitoring (SHM) is becoming popular in analyzing the life of critical
infrastructure such as bridges on a continuous basis. For most of the
applications, data aggregation requires high sampling rate. A need for
accurate time synchronization in the order of 0.6−9 µs every few minutes
is necessary for data collection and analysis. Two-stage energy-efficient
time synchronization is proposed in this paper. Firstly, the network is di-
vided into clusters and a head node is elected using Low-Energy Adaptive
Clustering Hierarchy based algorithm. Later, multiple packets of different
lengths are used to estimate the delay between the elected head and the
entire network hierarchically at different levels. Algorithmic scheme lim-
its error to 3-hop worst case synchronization error. Unlike earlier energy-
efficient time synchronization schemes, the achieved results increase the
lifetime of the network.

Keywords: Time Synchronization, Wireless Sensor Networks, Critical Infras-
tructure Monitoring, Structural Health Monitoring, Energy Efficient.

1 Introduction

Time synchronization in WSN has been an important research area over the
past decade. Numerous protocols, benchmarked algorithms and approaches have
been proposed to reduce the synchronization error and also being implemented
to test their viaibility for WSN; Reference Broadcast Synchronization (RBS) [2],
Timing-sync Protocol for Sensor Networks (TPSN) [3], Flooding Time Synchro-
nization Protocol (FTSP) [10], Lightweight Time Synchronization for Sensor
Networks (LTS) [4], Tiny-sync [15] and Mini-sync [15] are widely used.

Time synchronization is an inherent problem in any network. The time be-
tween any two networked computers differs due to clock drift and clock offset.
Often the crystal oscillator, provider of appropriate timing signals, is observed
to be drifted from its normal specified frequency. The clock instability is caused
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by many environmental factors, chiefly attributing to temperature variation [13].
The frequency offset is the difference in clock timing between two clocks at any
particular instant. As the frequency of the crystal varies, the clock offset varies
i.e. offset increases or decreases relative to other clock.

Physical time plays a crucial role in WSN application for Critical Infrastruc-
ture Monitoring (CIM) [1, 8]. Multiple nodes possessing identical timestamps of
an event are essential. The significance of physical time with respect to WSNs
are detailed in [12] as : (a) interaction between a sensor network and the ob-
server, (b) interaction between nodes, and (c) interface between nodes and the
real world. Absence of real-time clock on WSN motes, like Network Time Pro-
tocol (NTP) [11] on the Internet, having accuracy in the order of nano to pico
seconds, has given rise to software schemes to synchronize their on-board clocks.
Numerous solutions exist in literature such as software clocks, unidirectional
synchronization, round trip synchronization and reference broadcasting having
many advantages and disadvantages; schemes based on high-rate data collection
are shown to have decreased in errors to failure in synchronizing [12]. Power-
constrained frequent synchronization is required to tackle drifting, a major con-
tributor to error, with an accuracy of 0.6 to 9 µs for modal analysis [9]. A 5 ms
drift in 6 s period was also reported by Wang et al. [17].

In this paper, an energy-efficient time synchronization algorithm is proposed
using few existing algorithms, but combines them uniquely to achieve the desired
goal. At first, it uses Low-Energy Adaptive Clustering Hierarchy (LEACH) for
dividing the network into clusters based on nodes’ available energy [5]. Later, a
new algorithm is proposed for synchronization. This paper is organized as fol-
lows: Section 2 gives brief description of existing protocols, Section 3 contains
the proposed approach towards time synchronization followed by Section 4 with
results and discussion, and the work is concluded in Section 5.

2 Related Work

Although, in general, substantial amount of work has been carried out toward
time synchronization [16], however, it was during the nascent stages of WSN re-
search, consequently, less importance was paid to energy consumption. As men-
tioned by Krishnamurthy et al. in [9], there is a need for frequent synchronization
than anticipated, affecting network lifetime. Following paragraphs presents few
existing useful time synchronization methods.

Reference Broadcast Synchronization (RBS) is a receiver-to-receiver syn-
chronization, a pioneering work, has a main drawback of growing number of
exchanged messages with larger networks [2]. With Flooding Time Synchroniza-
tion Protocol (FTSP), flooding the network with synchronization packets to
the neighbors, fails to compensate the propagation delay occurred and requires
a node to have enough data to perform linear regression to synchronize [10].
Timing-sync Protocol for Sensor Networks (TPSN) [3] uses two phases: Level
discovery phase forms a hierarchical network of different levels. Node with level
0 forms the top level followed by level 1, 2, 3 and so on. Node at level i commu-
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nicates with at least a node at the level above (i-1 ) it. During synchronization
phase, the node at level 0 (root node) initiates the phase using constrained
flooding [16, 3]. In TPSN, though a node at non-immediate level overhears the
message from higher levels, it only synchronizes with a node at a level above it.

Lightweight Time Synchronization for Sensor Networks (LTS) uses three mes-
sages to synchronize a pair of nodes [4] during the pairwise synchronization
stage. It is expandable from single-hop to multi-hop network, from centralized
to distributed synchronization. The tree-depth dependency and assumption of an
equally bounded-clock for all nodes limits appropriate synchronization. In the
recent past, Shahzad et al. [14] proposed Energy Efficient Time Synchroniza-
tion (EETS) combining RBS and TPSN for achieving better energy efficiency.
Although EETS improves energy efficiency, particularly in large networks with
multi-hops reaching up to 8-10 levels, the synchronization error crosses higher
than required level for CIM. More recently, Kim et al. [7] have developed an en-
ergy conserving algorithm by reducing the number of packets; another method
combining RBS, TPSN and LTS methods, the topology is identical to TPSN
and the best achievable error rate is affected by number of hops. In our pro-
posed algorithm, energy efficient clusters are created using LEACH as a part of
first stage. The second stage combines the aforementioned class of algorithms to
form hierarchical levels as in TPSN and pairwise synchronization as in LTS to
synchronize time.

3 Approach

Energy-efficient time synchronization is carried out in two stages: (a) dividing
the network into clusters in an energy-efficient manner using LEACH [5] and
(b) synchronizing the time within the cluster using multi-level pairwise syn-
chronization. LEACH elects a cluster head periodically based on the highest
energy-available live node. The chance of becoming a cluster head is rotated
randomly ensuring that energy from a single node is not drained out [5]. Upon
cluster head election, pairwise transmission-range based multilevel, hierarchical
sub-clusters are formed in the vicinity of the parent node. Variable-length pack-
ets are used to determine the nondeterministic latency between sender and the
receiver and compensate this delay before transmission. The algorithm ensures
that the time of a child node is same as that of the its parent. The elected four
cluster heads and the cluster formation is pictorially represented in Figure 1.

According to LEACH algorithm [5], the optimal number of nodes to be
cluster heads was chosen to be N̂ = 5%. In case of the proposed algorithm,
as the number of nodes in any cluster is limited to 12 (empirically chosen),
N̂ = (Total Number of Nodes)/12 + 1 is chosen for CIM. The second part of
time synchronizing procedure is divided into four phases as explained in the
following subsections.

The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-642-22543-7_32



Fig. 1. Schematic of Cluster formation using LEACH. Numbers within the node rep-
resent levels. B is the chosen cluster-head in any given round.

3.1 Initiation

Let there be ’N’ nodes neighboring to base station node. Out of ’N’ nodes, only
’P’ of them are within the communication range of base station node and the
remaining (N-P) nodes are not. All nodes in the network are switched ON before
any communication or network activity is initiated. Node B initiates its routine
by synchronizing its time with the base station i.e. with the computer ensuring
database connection. It should be noted that the nodes in the topology are placed
such that it is in the communication range of at least one node.

3.2 Registration

The process of adding a new node to the topology is called as ‘Registration’.
Each node has its own ID and are uniquely identifiable. For discussion, let us
consider N = 2. Nodes in the transmission range of B are therefore 1 and 2 and
vice-versa. Therefore, the transmission power for both parent (B) and child nodes
(1 and 2) are the same. After initiation process, B broadcasts a READY signal
to inform its neighbors that it is ready to accept REQUEST from child nodes.
Now, upon hearing B’s broadcast signal, both 1 and 2 will send a REQUEST
signals. When a READY signal is sent, B will wait for tw seconds to hear from
the nodes. Any message received after tw is discarded. Suppose, B received both
the requests from 1 and 2, then B will serve first node 1 folowed by 2 in a Time
Division Multiple Access (TDMA) slotted fashion. Nodes 1 and 2 are waiting
for the COMMAND signal from B. Nodes 1 and 2 will not proceed further until
they receive any signal from B.
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3.3 Calculating Nondeterministic Latency

Upon receiving and processing the COMMAND signal from B, node 1 will wait
for the tstart time to start. At tstart time, it will send a message M1 to B. It
is repeated for n times at every trepeat interval. Packets are time stamped at
physical layer of node 1 and are stored in B as and when received. Next, B
will send a COMMAND signal with M2 > M1 greater i.e. the message length
greater than the previous one. Even this time, B records node 1’s data. Let δtn
be the time difference between consecutive packets arrived at the base station
from a particular node. Let LM1 be the message length of M1 and the time
stamp of the packets’ arrival be t1...tn. Time difference between packets can be
calculated as in (1), where n is the packet arrived at time tn. B calculates the
average time dM1 required by a packet of size M1 to reach base station due to
send time, access time, propagation time and receive time and is given by (2).
Let LM2 be the length of M2. Now, B sends a second COMMAND signal with
M2 > M1. Equations (1) and (3) are calculated for M2. Then essentially, the
time required for packet of size LM2 − LM1 to be constructed, transferred and
received from node 1 (or node 2) to B is given by (4). Now B sends tByte in a
REGISTRATION COMPLETE message to node 1. tByte is used by a node to
compensate the delay for M bytes of data whenever in future it wishes to send
the data to B. B accept packets strictly from level 1, and level nodes 1 accept
data from level 2 only, identical to TPSN [3]. After this, node 1 sends a READY
command to its neighbors. At the same time, B sends a COMMAND signal to
node 2 and the process continues. At the end of REGISTRATION COMPLETE
with 2, B sends an ACCEPT command to accept data from 1 and 2. Node 2
continues to act as parent and starts broadcasting READY signal to its neigh-
bors.

δtn = |tn − tn−1| (1)

dM1 =

∑n

i=1 δtn
n

(2)

dM2 =

∑n

i=1 δtn
n

(3)

tbyte =
(dM2 − dM1)

(LM2 − LM1)
(4)

3.4 Time Synchronization

After every T seconds predetermined by application and the frequency of data
collection, B multi-casts current time to all the registered nodes. T is calculated
using (5), where ti is the time required for a ith node to be registered, taccept
is the time for accepting data from all the registered nodes. The typical tree
structure formed during time synchronization after selecting the cluster head is
illustrated in Figure 2.

T =

∑N

i=1 ti
N

+ taccept (5)
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Fig. 2. Hierarchical level creation during proposed second stage of time synchronization

The term
∑

N

i=1
ti

N
is required if a node child node fails and wants to re-register.

In (5), first part is ’Registration time’ and the second part is ’Data acceptance
time’ in the proposed scheme. Additionally, if there is a new node, then it can
register itself in the first part and send data subsequently. In general, T should
be selected such that allowances are made for any new node to be added.

3.5 Packets required to Synchronize a Node

Determining number of packets ’n’ in the COMMAND is a two-step process.
During the first step, B sends COMMAND with n=5. The maximum tolerable
synchronization error between two nodes is specified by the user as terror. During
the second step, the node calculates the δErrorn and the average of δErrorn
as in (6) and (7) respectively. If δErroravg is more than predetermined value
δterror, then B raises its bar and requests more packets during M2 acquisition,
otherwise M2 will have ‘n’ packets as well; B tries to find the delay due to
variable-length packet size.

δErrorn = δtn − trepeat (6)

δErroravg =

∑n

i=1 δErrorn
n

(7)

4 Results and Discussion

The proposed energy-efficient time synchronization algorithm can be catego-
rized as peer-to-peer, externally synchronized, deterministic, sender-to-sender
and clock-corrected approach analogous with table 2 of [16]. It gives an added
advantage of selectively using the node head for energy efficiency. Combining
well-known schemes effectively, the result presented is based on theory and from
earlier papers. Having presented the simulation results in this paper, in future, we
plan to validate the proposed algorithm on iMote2 platform and the implemen-
tation is underway. The reasons for choosing iMote2 platform, apart from being
available off-the-shelf, due to large memory capacity and high processing power
of iMote2s. In SHM application (such as bridges), continuous collection of 3-axis
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accelerometer data is required usually at 100-200 Hz. Furthermore, processing
and storage play vital roles. Hence, to channelize the data to a base station, an
energy-efficient data aggregation procedure is schemed to perform periodically.
For CIM, the distance between nodes is often limited to 50 m: iMote2’s antenna
range (external) is 60 m, an ideal platform for CIM applications. At the end
of this section, theoretical energy consumption and effect of packet length with
respect to iMote2 platform are presented.

LEACH is a very popular clustering-based routing protocol, has been shown
to minimize global energy usage by distributing the load among nodes [5]. The-
oretically and experimentally, it has been shown that the lifetime of the network
is increased 3 times compared to a static topology. In the first stage of the pro-
posed time synchronization, LEACH based clustering is used for dividing the
network into clusters. From the results presented in [2, 4, 3, 10], it is very clear
that the clock error increases as the number of hops increase. Using cluster-
based step at the first stage, ensures that the number of hops required in the
second stage of the algorithm will never cross three levels (12 nodes). Hence, the
maximum error in time synchronization by the proposed algorithm is the worst
case 3-hop error that of TPSN and LTS. According to Krishnamurthy et al. [9],
anything less than 10 µs error for 30 minutes duration is acceptable for modal
analysis using acceleration sensors. By virtue, the proposed algorithm ensures
this criterion. Moreover, the clustering algorithm enables data aggregation using
energy-efficient routing apart from time synchronization.

4.1 Simulation Analysis

The experiment was conducted using OMNeT++, a component-based discrete
event network simulation package. OMNeT++ offer tools to simulate computer
networks, queuing networks, processor architectures and for distributed systems.
We used NICTA’s Castalia 3.1 framework on top of OMNeT++ 4.1 to simulate
WSN scenarios [6]. In particular, for this work, we developed three simulation
scenarios with three nodes - one base base station node (N0) and two sink nodes
(N1, N2). N0 is the head of the nodes and the time-provider for other two nodes.
The experiment was simulated for 10 s, with synchronization period of 1 s each
for a total period of 10 s. Start up delay for the nodes were initialized to 0.5
ms. Node N0 waited for N1 and N2 for their reply after sending the initiation
(READY) signal. The waiting time (tw) was kept at 400 ms following the broad-
cast of READY signal to allow sufficient time to respond. Both N1 and N2 nodes
replied with REQUEST signal. After tW seconds, N0 processed REQUEST in
ascending order of the node IDs. Node N0 sent a COMMAND signal to N1 with
tstart=10 ms, trepeat=10 ms, n=5, M1=5, M2=15. N1 sent messages to N0 after
adding current time with tstart at trepeat intervals (M1=5, M2=15 bytes of data
sent ’n’ times).

Node N0 calculated δtn for M1 and M2 separately and then the average of δtn
i.e. dM1 and dM2. tByte was calculated using equation (4). Node N0 calculated
tByte and δErroravg, and sent the tByte to N1 as variable-length packet delay
with REGISTRATION COMPLETE signal. After processing nodes N1 by N0,
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N2 was processed by sending COMMAND signal. Further, after processing N2,
node N0 sent ACCEPT signal at start of taccept. In our simulation taccept=0 s as
only two sink nodes were considered. At T = 1 s from the start of the READY
signal, N0 multi-casts current time to registered nodes. Following this, N0 sent
READY signal for the next round of clock synchronization and this process
of synchronization was continued at different levels. We simulated for only one
level i.e. between N0 and N1-N2. In this simulation for each time synchronization
cycle, nodes N0 and N1 sent REQUESTs and participated in registration; how-
ever, during implementation, registration will be done once only. Media Access
Control (MAC) layer was bypassed in the simulation environment; radio was in
Ideal mode with a transmission power level of 0 dBm and configured to zero
interference model; wireless channel was set to have bidirectionally identical sig-
nal quality links between nodes. One-hop routing was carried out by application
layer.

• Scenario 1 - Equidistant nodes: N1 and N2 with distance equal to 14.14
m from N0 and trepeat = 10 ms; for Node N1 tByte was 8.27 ms, δErroravg
= 67.989, and tByte = 20.65 ms for N2, δErroravg =33.933 was obtained by
simulation. Using this, nodes N1 and N2 sent 10 messages every 1 s for ten
seconds. The message lengths were 5 and 15 bytes. For the two nodes, the
results are summarized in table 1 for seven rounds. It was observed from the

Table 1. Synchronization Errors for Node 1 and Node 2

Round Node Sync Error (ms) Node Sync Error (ms)

1 1 41.39 2 99.43

2 1 29.82 2 95.55

3 1 41.34 2 91.72

4 1 37.50 2 91.72

5 1 37.52 2 95.56

6 1 41.34 2 95.56

7 1 37.52 2 95.56

simulation time that, as the number of bytes increased, the transmission time
for a node increased, depending on number of bytes. The nondeterministic
delay associated with size of a packet can be calculated as a correction factor
(tByte∗ Number Of Bytes) and is applied before packet transmission.

• Scenario 2 - Unequal distance between nodes: Distance between N0
and N1 was 14.14 m, and between N0 and N2 was 26.92 m; the results
obtained from this simulation were same as Scenario 1, with distance having
less impact on nondeterministic latency. This can also be justified by the fact
the travel times for radio waves remains nearly unvaried for short distances.

• Scenario 3 - Synchronization error at different levels: Suppose level
i is the base station level, level i+ 1 is the child node levels, and level i+ 2
next child node levels up to level i+ n, then the error at different levels can
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be calculated relative to base station level as (8), where tByte(i+n)−i is the
time required from a byte to be transferred between nodes of level n and i;
Ni is the number of bytes to be transferred. The error at level i + n is the
cumulative error from level i+ n to i.

Errorni =

i∑

n

tByte(i+n)−i ∗Ni (8)

4.2 Energy consumption

Energy consumed by a node in general is essentially due to two main contrib-
utors: (a) Processor - for processing data, storing data, issuing commands to
Radio Interface (RI), etc and (b) Radio - to send, receive and perform opera-
tions on data received/sent. Energy consumed by a node varies depending upon
the two main contributors (processor and RI) and also due to active and sleep
times. During active times, the available energy is utilized (by processor and/or
RI) up to or less than their stated absolute maximum rating values. During sleep
(or idle) times, the nodes conserve their energy by entering into the low-power
modes, in particular, sleep modes deactivate RI. Energy consumed by a node for
the purpose of the communication, in general, at any particular instant, is given
by (9); energy consumed by the main processor of the node is given by (10) and
the total energy consumed by a node (at any instant of time) is (11)

ERI = EReceiver + ESender + ERadio Process (9)

EP = EProcess ∗ [TRadioON + TRadioOFF ] + ESleep ∗ TSleep (10)

EN = EProcessor + ERI (11)

From (9) - (11), for Imote2, EPmax = 97 mA; EPmin = 97 mA; ERImax =
36.626 mA; ERImax=27.5 mA. Energy expended in sending (Esend) and receiv-
ing (EReceive) a packet are 31 mA and 18.1 mA respectively. For the cluster
shown in Figure 2, energy consumed will be 32 w per cycle per cluster. For clus-
ters with different spatial orientation, energy consumption entirely depends on
number of clusters in the vicinity of each cluster head.

5 Conclusion

Time synchronization is fundamental to data fusion and henceforth to help detect
and/or monitor events. The accuracy of synchronized time among nodes, cou-
pling closely (in time), ameliorates the systems’s ability to determine an event.
Synchronization of time among nodes can be achieved by eliminating nondeter-
ministic delays (send time, access time, propagation time, receive time). Adding
to nondeterministic delays, frequency drifts due to clock instabilities and off-
set due to drifts, contribute to increase in synchronization error or mismatch
in clock timings among nodes. Though several algorithms and approaches have
been proposed by researchers for time synchronization, this proposed approach is
also equally useful for energy-efficient, robust, externally synchronized multi-hop
networks.
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